首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   2411篇
  免费   118篇
  国内免费   155篇
林业   432篇
农学   129篇
基础科学   51篇
  969篇
综合类   656篇
农作物   141篇
水产渔业   78篇
畜牧兽医   98篇
园艺   110篇
植物保护   20篇
  2024年   13篇
  2023年   53篇
  2022年   68篇
  2021年   43篇
  2020年   45篇
  2019年   54篇
  2018年   52篇
  2017年   85篇
  2016年   101篇
  2015年   121篇
  2014年   108篇
  2013年   143篇
  2012年   179篇
  2011年   280篇
  2010年   175篇
  2009年   210篇
  2008年   152篇
  2007年   161篇
  2006年   114篇
  2005年   93篇
  2004年   87篇
  2003年   65篇
  2002年   37篇
  2001年   31篇
  2000年   37篇
  1999年   25篇
  1998年   25篇
  1997年   25篇
  1996年   24篇
  1995年   13篇
  1994年   10篇
  1993年   12篇
  1992年   7篇
  1991年   13篇
  1990年   7篇
  1989年   5篇
  1988年   1篇
  1987年   3篇
  1986年   1篇
  1985年   2篇
  1984年   2篇
  1981年   2篇
排序方式: 共有2684条查询结果,搜索用时 15 毫秒
101.
参与碳氮磷转化的水解酶对不同施肥响应的差异   总被引:2,自引:1,他引:2  
本文旨在研究土壤水解酶对不同施肥的响应差异以及影响因素。通过在红壤中添加牛粪有机肥、化肥进行90d的室内土壤培养试验,采用微孔板荧光法动态分析5、30和90d参与碳氮磷转化的土壤水解酶(α-1,4-葡萄糖苷酶、β-1,4-葡萄糖苷酶、纤维素酶、木聚糖酶、亮氨酸氨基肽酶、β-1,4-N-乙酰氨基葡萄糖苷酶、磷酸酶)活性。与不施肥(对照)相比,在30 d后,化肥处理的总酶活性显著下降,对应的参与碳氮磷转化酶活性均有不同程度下降;而有机肥处理的总酶活性在培养期内均未发生显著变化,但是其α-1,4-葡萄糖苷酶显著增加,而磷酸酶活性显著降低。参与碳转化的4种水解酶中,只有α-1,4-葡萄糖苷酶活性对施肥的响应较强,且施加有机肥增加其活性而无机肥则降低其活性;对于参与氮转化的水解酶而言,化肥明显抑制了亮氨酸氨基肽酶活性,而有机肥增加了β-1,4-N-乙酰氨基葡萄糖苷酶活性;磷酸酶活性明显受到有机肥的抑制作用,而对化肥的响应总体不明显。不同水解酶对不同施肥的响应有明显差异,NMDS分析表明,α-1,4-葡萄糖苷酶和亮氨酸氨基肽酶响应最明显,其次为磷酸酶与木聚糖酶;相关和冗余分析显示,土壤p H、可溶性有机碳对酶活性的影响最大,一定程度说明了不同肥料通过影响土壤理化性质进而影响水解酶活性。  相似文献   
102.
CO_2浓度、氮素和水分对春小麦碳素固定的影响   总被引:1,自引:0,他引:1  
李伏生  康绍忠 《土壤通报》2004,35(5):546-549
试验设350μmolmol-1和700μmolmol-12种CO2浓度水平,湿润、干旱2种水分处理和施N0、50、100、150和200mgkg-15个水平。结果表明,CO2浓度增加,春小麦地上部碳固定量和碳固定总量均增加,但与氮肥施用水平有关。在中氮和高氮时,CO2浓度增高,地上部碳固定量和碳固定总量明显增加,而不施氮肥和低氮时,增加则不明显。不同水分处理地上部碳固定量和碳固定总量也没有明显差别,这表明,CO2浓度升高对氮素和水分胁迫及对春小麦碳固定并没有补偿作用。  相似文献   
103.
连栽对杉木人工林碳贮量的影响研究   总被引:5,自引:1,他引:5       下载免费PDF全文
选择不同栽植代数(1、23、代)、不同发育阶段(幼龄林、中龄林和成熟林)的杉木人工林进行不同栽植代数杉木林含C率、C贮量和年净固C量比较研究结果表明,不同栽植代数杉木林的含C率在45%~55%之间,不同代数间差异不明显,同一栽植代数相同发育阶段杉木林乔木层各器官含C率表现为皮>叶>干>根>枝。随栽植代数增加,杉木林C贮量和年净固C量明显降低,但不同发育阶段杉木林代数间差异程度不同,中龄林代数间差异最明显,与1代中龄林相比,2、3代杉木林C贮量分别下降16.98%和63.60%,年净固C量分别下降14.01%和25.14%。  相似文献   
104.
Rabbit sera (n = 1600) from 40 commercial farms were submitted to a serological screening for Encephalitozoon cuniculi by an enzyme-linked immunosorbent assay (ELISA) and a carbon immunoassay (CIA test). Antibodies anti-Encephalitozoon cuniculi were found in 505/1600 (31.6%) sera analysed, and all the farms (100%) resulted positive. Rabbits older than 4 months showed a significantly higher seropositivity for E. cuniculi (chi-squared test: p < 0.0001) than rabbits under 4 months, E. cuniculi sero-prevalence showed an increasing trend in rabbits within the farm along with the increase in the “number of rabbits on the farm”; however, this trend was not significant (Spearman’s correlation: p = 0.073).The findings of the present study confirm that rabbit is the main reservoir of E. cuniculi; they are of epidemiological relevance and immediate public health importance because of the recognized infectivity in humans by the microsporidium.  相似文献   
105.
低丘红壤有机碳库的密度及变异   总被引:19,自引:4,他引:19  
李忠佩 《土壤》2004,36(3):292-297
在中国科学院红壤生态实验站,采样分析了不同利用方式下土壤有机C 库的密度及其变异。结果表明,低丘红壤有机C 的密度0 ~ 20cm为(2.09 0.69) kg/m2,0 ~ 100 cm为(5.01 1.46) kg/m2; 全N密度0 ~ 20 cm为(0.20 0.07) kg/m2, 0 ~ 100 cm为(0.59 0.14) kg/m2。从裸地到稀疏荒草地,0 ~ 20 cm和0 ~ 100 cm土壤有机C 密度可以提高1.0 kg/m2和1.7 kg/m2;而从稀疏荒草地到人工林地或园地,0 ~ 20 cm和0 ~ 100 cm土壤有机C 密度可以提高0.7 kg/m2和0.9 kg/m2;稀疏荒草地如果开垦利用为水田,经长期培肥达到高度熟化,则0 ~ 20 cm和0 ~ 100 cm土壤有机C 密度可以提高2.3 kg/m2和4.4 kg/m2。即使不同类型的人工林地和园地之间,0 ~ 20 cm和0 ~ 100 cm土壤有机C 的密度差异也可达到1.0 kg/m2和3.5 kg/m2。不同地形部位之间0 ~ 20 cm和0 ~ 100 cm土壤有机C 密度差异达到1.3 kg/m2和2.9 kg/m2,全N密度差异达0.1 kg/m2和0.3 kg/m2;不同肥力水平之间0 ~ 20 cm和0 ~ 100 cm土壤有机C 密度差异达到1.5 ~ 2.2 kg/m2和2.8 ~ 4.1 kg/m2,全N密度差异达0.07 ~ 0.11 kg/m2和0.20 ~ 0.23 kg/m2; 强烈侵蚀可以降低0 ~ 20 cm和0 ~ 100 cm土壤有机C 密度1.4 kg/m2和2.2 kg/m2。因此,通过调整土地利用方式,可以提高土壤有机C 库密度,增  相似文献   
106.
Summary Seasonal effects of liming, irrigation, and acid precipitation on microbial biomass N and some physicochemical properties of different topsoil horizons in a spruce forest (Picea abies L.) were measured throughout one growing season. The highest biomass N was recorded in autumn and spring in the upper soil horizons, while the lowest values were obtained in summer and in deeper horizons. The clearest differences between the different soil treatments were apparent in autumn and in the upper horizons. Liming increased the microbial biomass N from 1.7% of the total N content to 6.8% (Olf1 layer) and from 1% to 2% of the total N content in the Of2 layer. The main inorganic-N fraction in the deeper horizons was NO inf3 sup- . An increase in cation exchange capacity was observed down to the Oh layer, while soil pH was only slightly higher in the Olf1 and Of2 layers after liming. The effects of irrigation were less marked. The microbial biomass N increased from 1.7% of total N to 4.8% in the Olf1 layer and from 1% to 2% of total N in the Of2 layer. In the Olf1 layer an increase in C mineralization was observed. Acid precipitation decreased the microbial biomass N in the upper horizons from 4.8% of total N to 1.8% in the Olf1 layer and from 2% to 0.5% in the Of2 layer. No significant changes in soil pH were observed, but the decrease in cation exchange capacity may result in a decrease in the proton buffering capacity in the near future.  相似文献   
107.
The effects of enriched CO2 atmosphere on partitioning of recently assimilated carbon were investigated in a plant-soil-microorganism system in which Lolium perenne seedlings were planted into cores inserted into the resident soil within a sward that had been treated with elevated CO2 for 9 consecutive years, under two N fertilisation levels (Swiss FACE experiment). The planted cores were excavated from the ambient (35 Pa pCO2) and enriched (60 Pa pCO2) rings at two dates, in spring and autumn, during the growing season. The cores were brought back to the laboratory for 14C labelling of shoots in order to trace the transfer of recently assimilated C both within the plant and to the soil and microbial biomass. At the spring sampling, high N supply stimulated shoot and total dry matter production. Consistently, high N enhanced the allocation of recently fixed C to shoots, and reduced it to belowground compartments. Elevated CO2 had no consequences for DM or the pattern of C allocation. At the autumn sampling, at high N plot, yield of L. perenne was stimulated by elevated CO2. Consistently, 14C was preferentially allocated aboveground and, consequently belowground recent C allocation was depressed and rhizodeposition reduced. At both experimental periods, total soil C content was similar in all treatments, providing no evidence for soil carbon sequestration in the Swiss Free Air CO2 Enrichment experiment (FACE) after 9 years of enrichment. Recently assimilated C and soil C were mineralised faster in soils from enriched rings, suggesting a CO2-induced shift in the microbial biomass characteristics (structure, diversity, activity) and/or in the quality of the root-released organic compounds.  相似文献   
108.
Earthworms are known to play a role in aggregate formation and soil organic matter (SOM) protection. However, it is still unclear at what scale and how quickly earthworms manage to protect SOM. We investigated the effects of Aporrectodea caliginosa on aggregation and aggregate-associated C pools using 13C-labeled sorghum (Sorghum bicolor (L.) Moench) leaf residue. Two incubations were set up. The first incubation consisted of soil samples crushed <250 μm to break up all macroaggregates with three treatments: (i) control soil; (ii) soil+13C-labeled residue and (iii) soil+13C-labeled residue+earthworms. Earthworms were added after 8 d and 12 d (days) later, aggregate size distribution was measured together with total C and 13C in each aggregate fraction. A second incubation was made to assay protected versus unprotected total C and 13C from 21-d laboratory incubations of intact and crushed large (>2000 μm) and small (250-2000 μm) macroaggregates and microaggregates (53-250 μm). Eight different pools of aggregate-associated C were quantified: (1) and (2) unprotected C pools in large and small macroaggregates, (3) unprotected C pools in microaggregates, (4) and (5) protected C pools in large and small macroaggregates, (6) protected C pool in microaggregates, and (7) and (8) protected C pools in microaggregates within large and small macroaggregates. In the presence of earthworms, a higher proportion of large macroaggregates was newly formed and these aggregates contained more C and 13C compared to bulk soil. There were no significant differences between the samples with or without earthworms in the C pool-sizes protected by macroaggregates, microaggregates or microaggregates within small macroaggregates. However, in the presence of earthworms, the C protected by microaggregates within large macroaggregates was a significant pool and 22% of this C pool was newly added C. In conclusion, these results clearly indicate the direct involvement of earthworms in providing protection of soil C in microaggregates within large macroaggregates leading to a possible long-term stabilization of soil C.  相似文献   
109.
We investigated C management index (CMI; an indicator of sustainability of a management system and is based on total and labile C) and soil aggregation in medium-textured soils (silt loam and silty clay loam) under different cropping systems as follows: maize-wheat (M-W), rice-wheat (R-W), soybean-wheat (S-W), Guinea grass, and Setaria grass. Field experiments were 6–32 years long and were located in the wet-temperate zone of northwest Himalayas. The plant nutrients were applied through chemical fertilizers (urea, superphosphate, and muriate of potash) with or without organic materials (FYM, wheat straw, and Lantana spp.). The content of total C (CT), labile C (CL), CMI, mean weight diameter (MWD), and aggregate porosity varied significantly under different cropping systems. The range was 1.59 (R-W)–4.29% (Setaria) for CT, 1.23 (R-W)–3.89 mg/kg (Guinea grass) for CL, 52.09 (R-W)–129.77 (Guinea grass) for CMI, 0.90 (R-W)–5.09 (Guinea grass) for MWD, and 41.5 (R-W)–56.8% (S-W) for aggregate porosity. Aggregate porosity was highest (56.8%) under S-W, followed by grasses (50.1–51.2%), and M/R-W (41.5–50.0%). As per these data, (a) continuous use of N alone as urea lowered soil sustainability over control (no fertilizers); (b) use of NPK at recommended rates improved soil productivity over control; (c) the NPK + organic amendments further improved soil sustainability; and (d) the sustainability under different cropping systems followed the order: perennial grasses > soybean-wheat > maize-wheat > rice-wheat.  相似文献   
110.
In the Oxisols of the eastern plains of Colombia, the large native anecic earthworm Martiodrilus sp. is an abundant ecosystem engineer producing long-lasting casts and burrows. Casts deposited in the soil by this species have been estimated at several tonnes per hectare per year. The physical and chemical processes occurring in these casts have never been studied. In this study, we compared the dynamics of water content (WC), total C (Ctot), and available N (Navail) contents, and the distribution in size of aggregates in ageing below-ground casts of this species and in the bulk soil. In a native herbaceous savannah and a sown grass/legume pasture (Brachiaria humidicola, Arachis pintoi, Desmodium ovalifolium and Stylosanthes capitata), fresh surface casts were experimentally injected into artificial burrows of 1 cm Ø and 10 cm depth and sampled at different dates during a total period of 120 days. The injection procedure used resulted in a 34% decrease in WC of the casts from the sown pasture and reduced the mean mass diameter (MMD) of the aggregates of casts from the savannah by 19%. Other properties were not significantly affected by the procedure.For injected casts in both grasslands, MMD and Ctot were stable during cast ageing while WC and Navail were initially at levels several times higher than the bulk soil and decreased to similar bulk soil values with ageing. The Ctot was twice and one third higher in casts compared with the bulk soil in the pasture and the savannah, respectively. Overall means for cast MMD (8.3 and 7.4 mm) were twice as high as those in the bulk soil (3.8 mm) in the savannah and the pasture, respectively. However, MMD was not significantly different between the casts and the bulk soil in two occasions in the pasture. Available nitrogen (Navail) in injected casts was initially greater than bulk soil levels, reaching maximum levels just after injection (116 and 93 mg kg−1) and remained significantly greater during 1-2 weeks, in the savannah and the pasture, respectively. In conclusion, the tonnes of casts deposited in the soil profile by Martiodrilus sp. each year are likely to contribute greatly to plant nutrition and to the regulation of the soil structure. For each anecic earthworm species, the ecological impact of its below-ground casts is likely to be as important as its surface casts.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号